

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Scaling Up Cloud Point Extraction of Aromatic Contaminants from Wastewater in a Continuous Rotating Disk Contactor. I. Effect of Disk Rotation Speed and Wastewater to Surfactant Ratio

Punjaporn Trakultamupatam^a, John F. Scamehorn^b, Somchai Osuwan^a

^a The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand ^b Institute for Applied Surfactant Research, University of Oklahoma, Norman, Oklahoma, USA

Online publication date: 08 July 2010

To cite this Article Trakultamupatam, Punjaporn , Scamehorn, John F. and Osuwan, Somchai(2005) 'Scaling Up Cloud Point Extraction of Aromatic Contaminants from Wastewater in a Continuous Rotating Disk Contactor. I. Effect of Disk Rotation Speed and Wastewater to Surfactant Ratio', Separation Science and Technology, 39: 3, 479 — 499

To link to this Article: DOI: 10.1081/SS-120027991

URL: <http://dx.doi.org/10.1081/SS-120027991>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Scaling Up Cloud Point Extraction of Aromatic Contaminants from Wastewater in a Continuous Rotating Disk Contactor. I. Effect of Disk Rotation Speed and Wastewater to Surfactant Ratio

Punjaporn Trakultamupatam,¹ John F. Scamehorn,^{2,*}
and Somchai Osuwan¹

¹The Petroleum and Petrochemical College, Chulalongkorn University,
Bangkok, Thailand

²Institute for Applied Surfactant Research, University of Oklahoma,
Norman, Oklahoma, USA

ABSTRACT

When an aqueous solution containing nonionic surfactant is heated above the cloud point, the solution separates into two phases. A micellar-rich phase, or coacervate, and a micellar-dilute phase are formed. Aromatic contaminants present in the original solution tend to solubilize into the micelles in the coacervate phase and concentrate there—this is the basis

*Correspondence: John F. Scamehorn, Institute for Applied Surfactant Research, University of Oklahoma, 100 E. Boyd Street, Sarkeys Energy Center Room T-335, Norman, OK 73019, USA; Fax: 405-325-5813; E-mail: scamehor@ou.edu.

of the separation process known as cloud point extraction (CPE). In this study, CPE was scaled up from single-stage, batch experiments to multistage continuous operation in a rotating disk contactor (RDC) to remove the aromatic contaminants, toluene and ethylbenzene, from wastewater. A nonionic surfactant, *t*-octylphenolpolyethoxylate, was utilized as the separating agent. The concentration of solutes in the coacervate phase increased as agitator speed, wastewater to surfactant solution flow rate ratio, and degree of alkylation of the aromatic solutes increased. The overall volumetric mass-transfer coefficient (K_a) and the number of transfer unit (NTU) in the RDC increased with increasing rotation speed of the rotor disk. In this pilot scale, multistage continuous operation, the toluene partition ratio and concentration of toluene in the coacervate phase are two times greater than that observed in a single-stage, equilibrium batch experiment with the same initial conditions.

Key Words: Aromatic contaminants; Cloud point extraction; Rotating disk contactor; Nonionic surfactants; Wastewater.

INTRODUCTION

Environmental contamination due to wastewater discharges containing a trace amount of aromatic compounds can cause severe problems because of the toxicity of either known or suspected carcinogens or mutagens.^[1] A novel class of separation processes known as surfactant-based separations have shown to be effective techniques in environmental clean-up.^[2-5] These techniques involve biodegradable, nontoxic separating agents (surfactants) and include technologies such as surfactant enhanced oil recovery, foam fractionation, and froth flotation. Cloud point extraction (CPE) is one of the surfactant-based separation technologies, which is effective and economical in the removal of organic compounds from polluted water.^[1,6-18] An aqueous solution of nonionic surfactant undergoes a phase separation when it is at a temperature above its cloud point, attained either by heating or by adjustment of surfactant structure or additives to lower the cloud point of the surfactant below the operating temperature. Above the cloud point, two isotropic micellar phases are formed; one phase is generally less in volume and contains most of surfactant micelles and is known as a micellar-rich, or coacervate phase. The other phase is an aqueous solution lean in surfactant micelles, known as a micellar-dilute, or dilute phase. When nonionic surfactant is added to polluted water above the cloud point, the organic solutes contained in the solution will solubilize into surfactant micelles. After the phase separation, surfactant and pollutants are concentrated in the coacervate phase. The dilute phase, which contains a low concentration of organic pollutant, can be

discharged to the environment as the effluent water. If a single-stage results in insufficient purification, multiple stages can be used as in traditional liquid–liquid extraction, as investigated in this work. The CPE is a special case of a class liquid–liquid extraction, known as aqueous biphasic extractions.^[19]

From our previous work, we have shown in batch experiments that CPE is a promising technique to remove aromatic compounds (benzene, toluene, and ethylbenzene) from aqueous wastewater by concentrating them in the coacervate phase.^[18] These chemicals are common pollutants of great environmental concern originating from industrial effluents and gasoline tank leakage. Moreover, the coacervate solution, which contains a high concentration of surfactant, is recoverable because the volatile aromatic solubilizates can be removed by stripping, leaving the solute-free surfactant stream available for reuse. The objective of this research was to scale up the cloud point extraction technique in continuous operation in a multistage, differential extractor. To our knowledge, all previous studies of CPE have involved batch extractions. Even though high separation factors may be observed, it is not at all obvious that the extraction can be scaled up in a continuous, multistage unit without operational problems, since the coacervate phase can be very viscous.

BACKGROUND

There is a phase separation of polyethoxylate nonionic surfactant solutions into two phases at a certain temperature known as the cloud point.^[1,6–22] At the cloud point, the solution appears cloudy since the coacervate or micelle-rich phase is emulsified in the dilute phase. The coacervate phase can be very concentrated in surfactant, sometimes exceeding 50 wt%. The dilute aqueous phase contains a low surfactant concentration approximately 2 to 20 times the critical micelle concentration (CMC). The phase separation process is reversible and two phases can merge together to form a homogeneous phase on cooling.^[9,14] The cloud point is generally defined at a surfactant concentration of 1 wt%.^[23] However, it is not highly concentration dependent.^[11,21,23,24] At the surfactant concentration that exhibits the minimum cloud point, this temperature is known as the lower consolute temperature (LCT).^[24] The clouding is reported to be due to an increase in dehydration of hydrated outer micellar layers, intermicellar attraction, and increase in micellar size when the temperature is increased.^[9,14] Cloud points of nonionic surfactants depend on their structure. An increase in the degree of polymerization of ethylene oxide and decrease in hydrocarbon chain length of the hydrophobic moiety of polyethoxylated nonionic surfactants can elevate the cloud point.^[9,22,25,26] An addition of polar compounds depresses the cloud point by decreasing the hydration of the polyoxyethylene chains due to the competition for the

hydratable sites by the polar solubilizes.^[20] Added ionic surfactant can drastically increase the cloud point of the mixed micelles system by imposing an electrostatic repulsion between micelles, which opposes the intermicellar attraction.^[27–29] An electrolyte can alter the cloud point due to the salting-in or the salting-out effect.^[21,27–30]

Many studies of CPE have been done with low volatility organic solutes such as polycyclic aromatic hydrocarbons (PAH) and biomaterials.^[1,6–11,14–17,19–22] Despite their importance as pollutants in water, volatile organics have received little attention in CPE studies. We feel that this is largely due to the extreme care that must be taken to minimize leakage of solutes with high vapor pressures, as detailed in our previous batch studies of trichloroethylene, dichloroethane, trichloroethane, tetrachloroethane, benzene, toluene, and ethylbenzene.^[12,13,18] A major advantage of CPE of volatile organic pollutants (VOCs) is the potential to regenerate the surfactant in the coacervate stream for reuse because these VOCs have high enough volatility to be separated from the concentrated surfactant solution by gas, steam, or vacuum stripping.^[31–33]

Solute partition ratio is defined as the ratio of coacervate solute concentration to dilute phase solute concentration. Volatile organics do not tend to have as high of a partition ratio as higher molecular weight, less volatile organics. For example, at 30–50°C, measured partition ratios of chloroethane range from 15 to 86,^[13] trichloroethylene from 34 to 105,^[12] benzene from 10 to 29,^[18] toluene from 28 to 65,^[18] and ethylbenzene from 71 to 162,^[18] compared to a range of 393 to 634 for *t*-butylphenol.^[6] So, multiple stages will often be required to attain a required degree of separation for volatile organics. Large-scale application of CPE requires a continuous, steady-state operation for economical operation as with other liquid–liquid extraction unit operations. While physically separate extraction stages can be used, a column with multiple stages in a single unit is most efficient.^[34–36]

In continuous differential equipment, a density difference between the fluids being contacted makes a countercurrent operation possible. The denser phase enters at the top of the column and flows downward, while the lighter phase enters at the bottom and flows upward. The cross-sectional area of the column must be large enough to avoid flooding. The height of the column is controlled by the rate of mass transfer and the amount of material required to be extracted. Due to a small density difference between the contacted liquids (the coacervate and the dilute phase), gravitational forces are insufficient to promote a good phase dispersion and turbulence mixing.^[34,35] Also, the back mixing between extraction stages has to be overcome to allow the phase separation to occur. Hence, mechanical agitation is normally applied to improve the performance by increasing the interfacial area per unit volume and reducing the mass transfer resistance.^[37,38] As shown in Fig. 1, a rotating agitator driven by a shaft is typically used, since it can create a shear mixing zone axially throughout

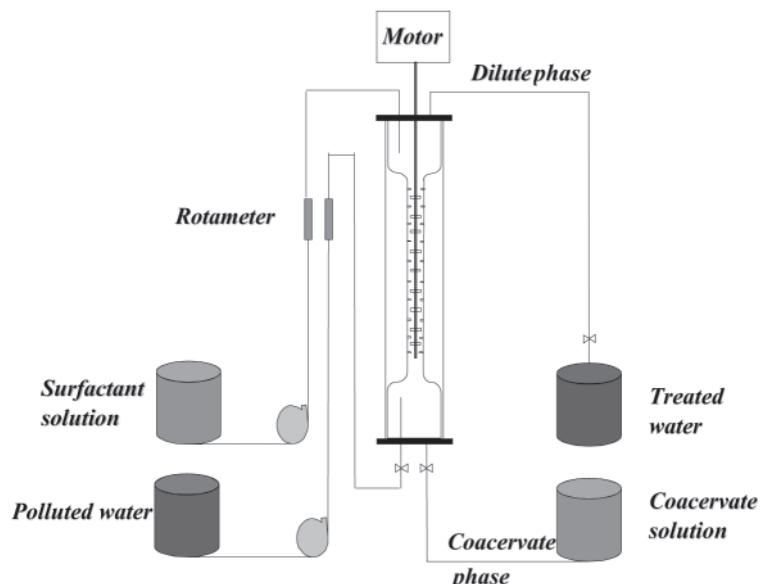


Figure 1. A schematic diagram of the CPE pilot plant.

the column in a rotating disk contactor (RDC). The RDC has high efficiency per unit height, high throughput, high operational flexibility, ease of operation, and low cost.^[38] The RDC provides a good dispersion between phases because of the shear between rotor disks connected to a central rotating shaft. Moreover, the stators attached to the inside of the wall of the column serve as baffles to reduce back-mixing during the extraction.

EXPERIMENTAL

Materials

A polydisperse commercial branched *t*-octylphenolpolyethoxylate, OP(OE)₇, with an average of 7 mol of ethylene oxide per mole of octylphenol (trade name Triton X-114) from Dow Chemical Inc. (South Charleston, WV) was used as the nonionic surfactant in this study. Reagent grade toluene was from J. T. Baker (Phillipsburg, NJ) with a purity of 99.8% and ethylbenzene was from Fluka (Buchs, Switzerland) with a purity of 98%. All chemicals were used as received. The water was distilled.

Apparatus: Rotating Disk Contactor

Figure 1 shows a schematic diagram of the CPE pilot plant. A cylindrical column made of Pyrex glass with 29.2 mm ID has an acrylic water jacket with 49.2 mm ID, through which temperature controlled water can be circulated. The extractor column has a mixing zone in the middle and a settling or empty zone at either end of the column. To increase the residence time of the micellar-dilute phase and the coacervate phase before leaving the column, the diameter of the settling zone (100 mm ID) needs to be substantially larger than that of the mixing zone (29.2 mm ID). The heights of the settling zone and mixing zone are 150 and 700 mm, respectively. In the mixing zone, there are 32 horizontal rotor disks of 17.52 mm in diameter and 1 mm in thickness mounted on a speed adjustable, vertical shaft at the center of the column. In addition, there are 33 annular stator rings with an outer and inner diameter of 29.2 and 20.44 mm, respectively, and 1 mm in thickness. The opening of the stator rings is larger than the rotor disk diameter. The compartment spacing between stators is 22 mm. The rotor disks, stators, and shaft are made of 316 stainless steel.

Procedures

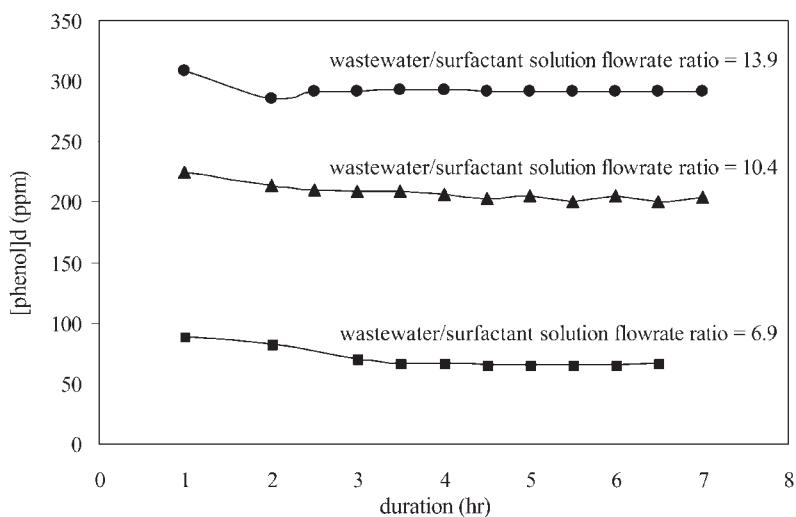
In general, the phase, which has a lower flow rate and/or possesses a higher viscosity, is chosen to be the dispersed phase. In this work, the coacervate or surfactant solution (solvent) was selected to be the dispersed phase. As a result, wastewater (feed) is the continuous phase. Based on the density difference, the heavy surfactant solution was fed into the top of the column, while the light wastewater was fed into the bottom of the extractor. The interface is controlled to be at the bottom of the column. After the unit was assembled and checked for leaks, the continuous phase was fed into the column until the level was above the top agitator, followed by the dispersed phase to completely fill the column, as indicated by some overflow occurring from the top of the column. While filling the column, the water jacket was filled with temperature-controlled circulating water under conditions that maintained the column temperature at 40°C.

The contaminated feed water and the surfactant solvent solution were fed into the extractor counter-currently at defined flow rates regulated by rotameters. When the system reached steady state, as indicated by no change in the surfactant and solute concentration in the dilute phase with time, samples were collected from the effluent dilute phase and the coacervate phase (see Fig. 1) to determine the concentration of nonionic surfactant and aromatic solute. In addition, the flow rate of the dilute phase stream was determined by measuring the volume of the dilute phase collected over a measured time

interval while the flow rate of the coacervate phase stream was obtained from an overall material balance.

The concentrations of OP(EO)₇ and aromatic solutes were measured by using a CE 2000 series UV-spectrophotometer (Cecil Instrument Limited, Cambridge, England) at 224 nm, in which the absorptivity was in a range of 0 to 1 absorbance units (AU), and a gas chromatograph with a flame ionization detector (Perkin Elmer, Inc., Shelton), respectively. Because of the high volatility of aromatic solutes, static headspace sampling was used as the sample injection technique, which eliminated interference of the high molecular weight nonionic surfactant. The volume of samples for the coacervate and dilute phase were 50 μ L and 1 mL, respectively. The gas chromatograph conditions were: column: Supelcowax 10, packing which is equivalent to Carbowax 20M with column OD of 1/8 inches and length of 3 m; carrier, ultra-pure nitrogen with the flow rate of 20 mL/min; oven temperature, 100°C isothermal; injector temperature, 150°C; and detector temperature, 250°C. The retention times of toluene and ethylbenzene under these conditions were approximately 1.18 and 1.34 min, respectively. The external standard quantitative calibrations were obtained for the analysis of surfactant and aromatic solutes in both phases. Closure of the material balance was taken as evidence that leakage of the volatile solute was negligible.

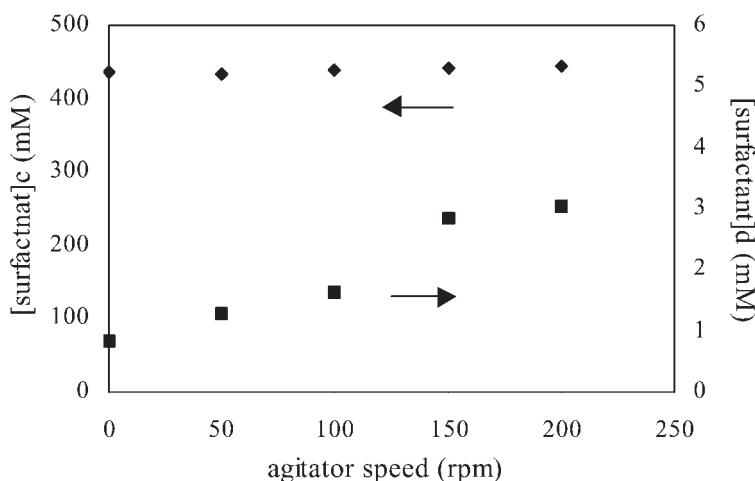
The RDC operating conditions and variables were as follows: column temperature, 40°C; concentration of surfactant, 300 mM; concentration of aromatic pollutant in wastewater, 100 ppm; agitator speed, 0–200 rpm; wastewater to surfactant solution flow rate ratio (feed to solvent flow rate ratio), 5.9–13.70; and solutes, toluene and ethylbenzene.


RESULTS AND DISCUSSION

Steady State Time Analysis

A determination of the time to attain steady state in the RDC was determined by measuring the concentration of solute in the effluent dilute phase as a function of time. The concentration of the solute in the wastewater feed stream and the position of the interface were determined to be constant throughout the experiment.

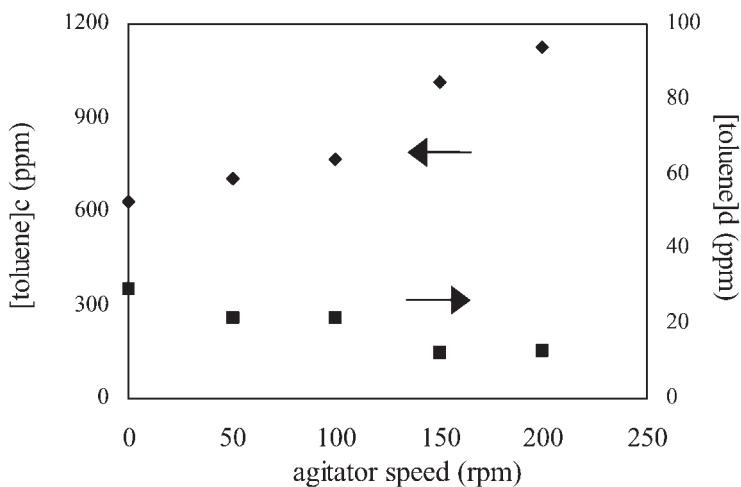
Phenol was used as the solute in the determination of time to attain steady state for convenience, because it has similar molecular structure and size, but lower volatility than the target solutes (toluene and ethylbenzene) used in this study; hence, there is less concern about loss of solute into the head-space. The effect of wastewater to surfactant flow rate ratio on the steady state time is shown in Fig. 2. The inlet phenol concentration was held constant at 500 ppm


Figure 2. Phenol concentration in dilute phase stream as a function of operating time (system: 500 ppm phenol, 300 mM surfactant solution, 150 rpm agitator speed, and 40°C).

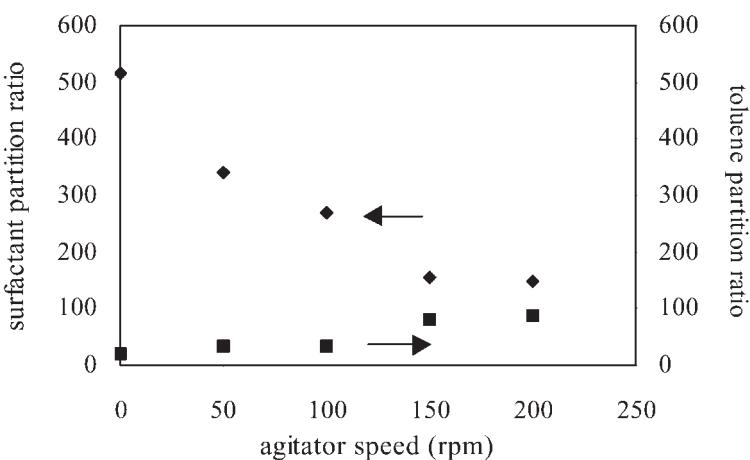
in every experiment. The wastewater to surfactant solution flow rate ratio was varied from 6.9 to 13.9 to cover the entire wastewater to surfactant ratio range used in subsequent experiments. As the flow rate ratio increased, the system reached steady state faster but the concentration of phenol in the dilute phase was higher, which indicates poorer extraction efficiency. At the lowest wastewater to surfactant flow rate ratio studied here, the system took 3.5 h to reach steady state. Therefore, 4 h of operation was allowed for all runs to ensure that a steady state was attained.

Effect of Agitator Speed in Cloud Point Extraction of Toluene

The rotation speed of the rotor disk did not show a significant effect on the surfactant concentration in the coacervate solution, but it caused a substantial increase in the surfactant concentration in the dilute phase, as shown in Fig. 3. At higher agitator speed, the coacervate phase was beaten up into tiny drops, which can entrain to the top of the column with the dilute phase, as indicated by a higher surfactant concentration in the dilute phase. Beyond a speed of 200 rpm, flooding was approached because the coacervate drops were too fine to flow downward and were carried with the dilute phase stream, which flows upward. The flooding condition corresponds to the appearance of a cloudy


Figure 3. Surfactant concentration in coacervate stream (c) and dilute phase stream (d) as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, and 40°C).

surfactant solution at a certain location in the mixing zone. Below that particular position, there was no appearance of the coacervate droplets.


When the agitation speed increased, the dispersed drop size was smaller, resulting in a higher interfacial area and longer residence time of droplets in the mixing zone.^[37-39] Tong et al.^[38] studied the effect of agitator speed in a RDC in the reversed micellar extraction of lysozyme. They reported that 70–90% of lysozyme was extracted depending on the agitator speed. Figure 4 shows an increase in toluene concentration in the coacervate solution with increased rotation speed of the rotor disk. The toluene concentration in the dilute phase decreased from 29.2 ppm with no rotating agitator to 12.9 ppm at an agitator speed of 200 rpm. With no agitation, the static rotors and stators served as baffles to break up the coacervate droplets along the column. The average coacervate drop size with no agitation was visually larger than that obtained when mechanical agitation was applied.

Although an increase in agitation enhanced the extraction efficiency, there is a limitation. Beyond a certain point, an excessive agitation may inhibit the process.^[37,39] The partition ratio of surfactant and toluene are shown in Fig. 5, where the fraction of total surfactant present and fraction of toluene extracted in the coacervate phase are shown in Fig. 6. The partition ratio is the ratio of solute or surfactant concentration in the coacervate phase to that of in the dilute phase. A higher partition ratio indicates a better separation. Figure 5 illustrates an

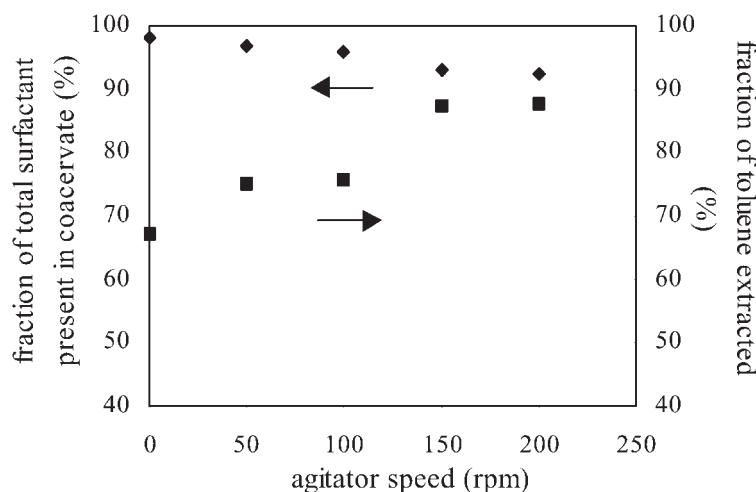
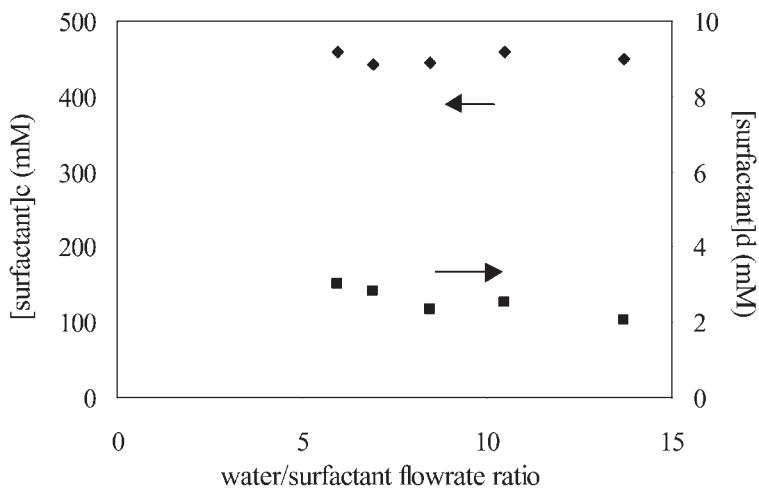


Figure 4. Toluene concentration in coacervate stream (c) and dilute phase stream (d) as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, and 40°C).

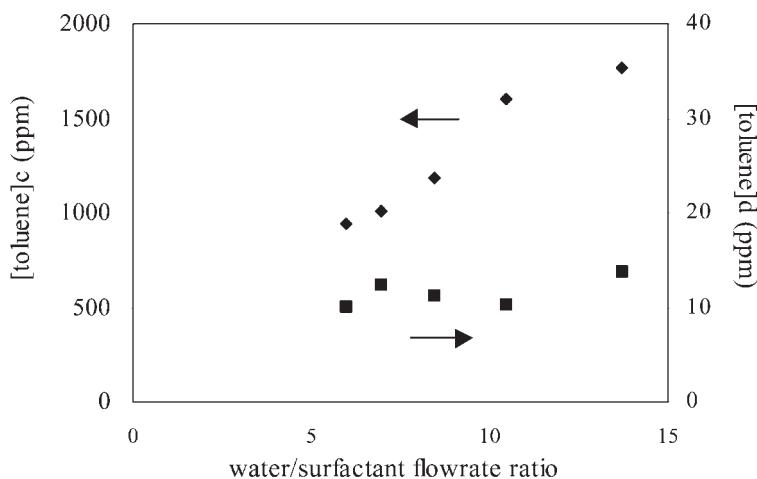
Figure 5. Surfactant and toluene partition ratio as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, and 40°C).


Figure 6. Fraction of total surfactant present in coacervate and fraction of toluene extracted in coacervate stream as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, and 40°C).

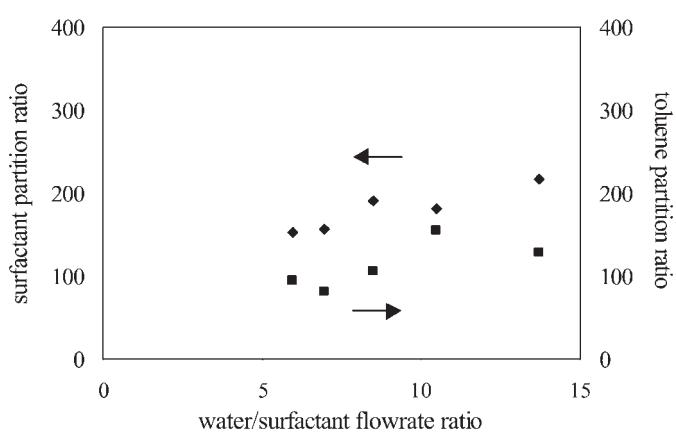
increase in toluene partition ratio as the agitator speed is raised. On the other hand, the surfactant partition ratio decreases when the agitator speed is increased due to the entrainment of the coacervate drops. At an agitator speed of 150 rpm, the toluene partition ratio as high as 81.9 is observed and 87.5% of toluene is extracted into the coacervate solution, as seen in Fig. 6. There is no significant further change in extractor performance as the agitator speed further increases from 150 to 200 rpm. Beyond a speed of 200 rpm, flooding occurs. Although there is the entrainment of coacervate droplets, more than 92% of the surfactant resides in the effluent coacervate solution at every agitator speed studied here.

Effect of Wastewater to Surfactant Flow Rate Ratio on the Cloud Point Extraction of Toluene

The surfactant concentrations in the coacervate and the dilute phase are not much affected by the wastewater to surfactant flow rate ratio as shown in Fig. 7. Therefore, the flow rate of the extracted coacervate phase decreased with increasing wastewater to surfactant flow rate ratio, as required from material balance considerations. This result corresponds to that obtained from batch experiments in previous work when the total surfactant concentration


Figure 7. Surfactant concentration in coacervate stream (c) and dilute phase stream (d) as a function of wastewater to surfactant solution flow rate ratio (system: 100 ppm toluene, 300 mM surfactant solution, 150 rpm agitator speed, and 40°C).

was varied.^[12,18] A higher toluene concentration in the coacervate solution was observed when the flow rate ratio increased (or the flow rate of surfactant solution decreased) due to a longer residence time of the coacervate drops in the extraction column. However, the concentration of toluene in the dilute phase was not significantly affected by the wastewater to surfactant flow rate ratio, as demonstrated in Fig. 8. An increase in flow rate ratio did not have a substantial effect on the toluene and surfactant partition ratios and the fraction of toluene and surfactant retained in the coacervate solution, as illustrated in Figs. 9 and 10, respectively. As an illustration of the effectiveness of this separation in the RDC, at a wastewater to surfactant flow rate ratio of 5.79, the surfactant and toluene partition ratio are 153.1 and 93.8, respectively. In addition, the fraction of toluene extracted in the coacervate solution is 90.0% and 93.6% of surfactant is present in the coacervate solution.


Effect of Solute Structure in Cloud Point Extraction

A comparison of solute partition ratio, surfactant partition ratio, and the fraction of solute extracted in the coacervate solution between toluene and ethylbenzene are shown in Fig. 11. Ethylbenzene can depress the cloud point of the system more than toluene, as shown in previous work,^[18] resulting in

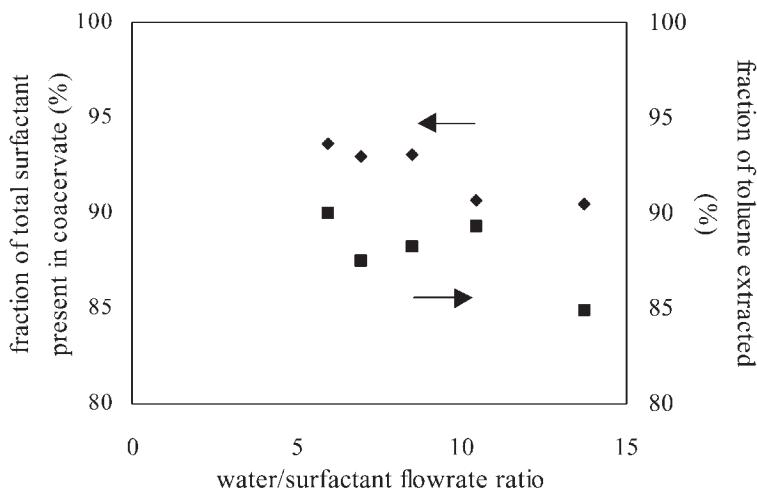
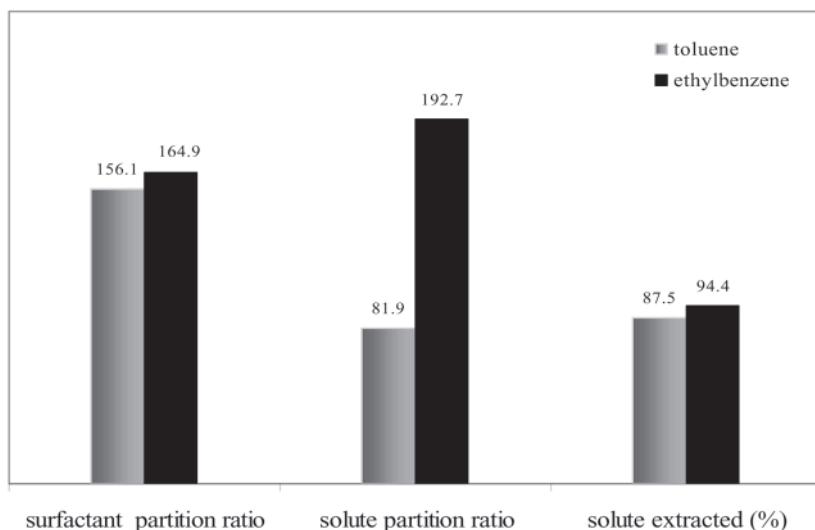


Figure 8. Toluene concentration in coacervate stream (c) and dilute phase stream (d) as a function of wastewater to surfactant solution flow rate ratio (system: 100 ppm toluene, 300 mM surfactant solution, 150 rpm agitator speed, and 40°C).

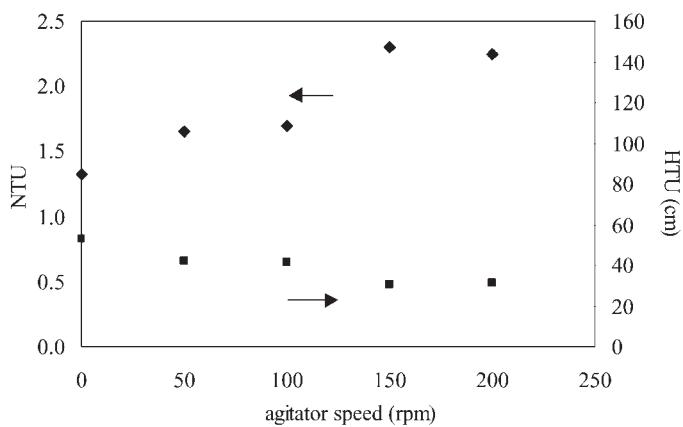
Figure 9. Surfactant and toluene partition ratio as a function of wastewater to surfactant solution flow rate ratio (system: 100 ppm toluene, 300 mM surfactant solution, 150 rpm agitator speed, and 40°C).

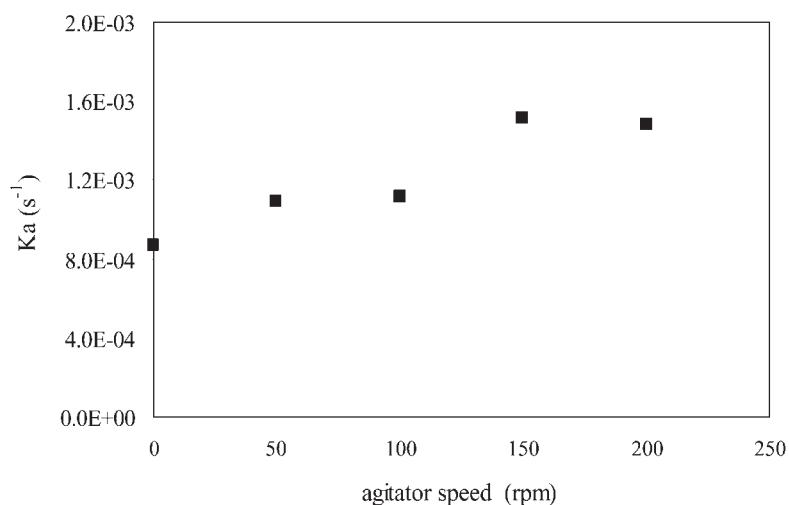

Figure 10. Fraction of total surfactant present in coacervate stream and fraction of toluene extracted in coacervate stream as a function of wastewater to surfactant solution flow rate ratio (system: 100 ppm toluene, 300 mM surfactant solution, 150 rpm agitator speed, and 40°C).

the operating temperature being more above the cloud point and the surfactant partition ratio being higher for the ethylbenzene system. The solute partition ratio and the fractional extraction of ethylbenzene are higher than that of toluene. In addition to the cloud point depression effect, this is due to ethylbenzene having lower water solubility than toluene; hence it tends to solubilize to a greater degree into the micelles in the coacervate phase. These same trends were also observed in equilibrium batch experiments. At 40°C, the ethylbenzene partition ratio was 192.7 and 94.4% of ethylbenzene was extracted in the coacervate solution, compared to a toluene partition ratio of 81.9 and 87.5% of toluene extracted in the coacervate solution.

Determination of Number of Transfer Unit, Height of Transfer Unit, and the Overall Volumetric Mass-Transfer Coefficient

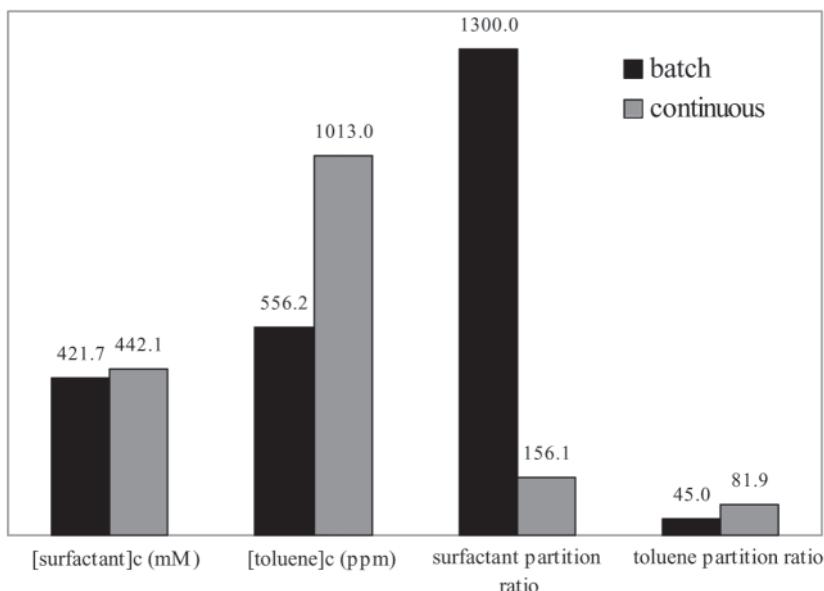
The height of transfer unit (HTU) is the column height required to attain the separation that is equivalent to one equilibrium batch extraction and the NTU is the number of these single-stage, batch extraction equivalents in the experimental column used. The HTU is particularly important in the design of




Figure 11. Comparison of surfactant and solute partition ratio and fraction of solute extracted in coacervate stream between toluene and ethylbenzene (system: 100 ppm solute, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, 150 rpm agitator speed, and 40°C).

industrial scale extraction columns. Based on the design of differential extractors in the literature, the graphical method can be used to determine the NTU by constructing the equilibrium line and the operating line on a plot between the mass fraction of toluene in the coacervate phase (X_{tou}) and the mass fraction of toluene in the dilute phase (Y_{tou}). The slope of the equilibrium line is a partition ratio obtained from batch experiments at equilibrium, whereas the slope of the operating line is the ratio of mass flow rate of the coacervate phase to mass flow rate of the dilute phase at the relevant position in the extractor.^[35] In our case, we assumed that the mass flow rates of both phases were constant, since the volumes of the separated phases were governed by the operating temperature, which was held constant throughout the column. Therefore, the operating line is a straight line with a constant slope. The NTU can be evaluated by either drawing a step line between those two lines, as in the McCabe–Thiele method, or by a numerical method.^[34,35] Since the total active height of the extraction column is a product of NTU and HTU, the HTU can then be calculated. In addition, overall volumetric mass transfer coefficient (K_a) is consequently determined, since K_a correlates inversely to HTU and liquid density but relates directly to liquid mass velocity. A smaller HTU (or higher NTU) shows a higher K_a or better extraction efficiency. Figure 12 shows that NTU increases as the agitator speed increases,

Figure 12. The NTU and HTU as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flow rate ratio, and 40°C).


Figure 13. Overall volumetric mass transfer coefficient (K_a) as a function of agitator speed (system: 100 ppm toluene, 300 mM surfactant solution, 6.9/1 wastewater to surfactant solution flowrate ratio, and 40°C).

from 1.3 transfer units with no agitation to the 2.3 transfer units at a rotating disk speed of 150 rpm. As a result, the HTU decreases when the agitator speed is raised, from 53.1 cm per transfer unit at no agitation to 30.5 cm per transfer unit at an agitator speed of 150 rpm. When the agitator speed is increased, the interfacial area of the coacervate drops increases as droplet diameter decreases, leading to a higher K_a , as illustrated in Fig. 13. The K_a obtained in this study (in the range of 10^{-4} to 10^{-3} sec $^{-1}$) was on the same order as that reported by Tong et al.^[38] in the reversed micellar extraction of proteins (in the range of 10^{-3} to 10^{-2} sec $^{-1}$).

Comparison of Extraction Performance Between Batch and Continuous Operation

The surfactant and toluene concentration in the coacervate solution, as well as the partition ratio obtained from a batch equilibrium single-stage and from continuous operation, are shown in Fig. 14. The surfactant concentration in the

Figure 14. Comparison of surfactant and toluene concentration in coacervate stream (c) and partition ratio between a single-stage equilibrium batch and continuous operation (system: batch, 3.75 wt% surfactant, 100 ppm toluene, and 40°C; continuous, 2.03 wt% surfactant, 100 ppm toluene, 6.9/1 wastewater to surfactant flow rate ratio, 150 rpm agitator speed, and 40°C).

coacervate solution from both operations are nearly the same. However, the surfactant partition ratio obtained from the extractor was notably less than that obtained from the batch experiment due to the entrainment of coacervate drops with the dilute phase, resulting in a higher surfactant concentration in the dilute phase, which caused a lower surfactant partition ratio. The concentration of toluene in the coacervate solution obtained from the continuous extractor was twofold higher than that obtained from the batch experiment, since it was a multistage extraction compared to a single-stage extraction in the batch operation; the NTU can be as high as 2.3 or the equivalent of 2.3 batch extractors in the continuous column. Obviously, the column height can be adjusted in designing a commercial unit to permit as many equivalent stages as needed.

This study demonstrated that scaling up CPE to a continuous extraction unit is straightforward and the normal type of design parameters to design a commercial column to attain any desired degree of separation (HTU or K_a) can be obtained from a pilot scale extraction column. Some small entrainment of coacervate into the dilute phase is the only factor observed that decreases performance of the RDC compared to predictions from equilibrium stage operations, as long as flooding conditions are avoided.

ACKNOWLEDGMENTS

Financial support for this work was provided by The Thailand Research Fund under The Royal Golden Jubilee Ph.D. Program and The Basic Research Grant. In addition, support was received from the industrial sponsors of the Institute for Applied Surfactant Research including Akzo Nobel Chemicals Inc., Albemarle Corporation, Amway Corporation, Clorox Company, Colgate-Palmolive, Dial Corporation, Dow Chemical Company, DowElanco, E. I. DuPont de Nemours and Co., Halliburton Services Corp., Henkel Corporation, Huntsman Corporation, ICI Americas Inc., Kerr-McGee Corporation, Lever Brothers, Lubrizol Corporation, Nikko Chemicals, Phillips Petroleum Company, Pilot Chemical Company, Procter and Gamble Company, Reckitt Benckiser North America, Schlumberger Technology Corp., Shell Chemical Company, Sun Chemical Corporation, Unilever Inc., and Witco Corporation. John Scamehorn holds the Asahi Glass Chair in Chemical Engineering at the University of Oklahoma.

REFERENCES

1. Bai, D.; Li, J.; Chen, S.B.; Chen, B.-H. A novel cloud-point extraction process for preconcentrating selected polycyclic aromatic hydrocarbons in aqueous solution. *Environ. Sci. Technol.* **2001**, *35*, 3936–3940.

2. Scamehorn, J.F., Harwell, J.H., Eds. *Surfactant-Based Separation Processes*; Marcel Dekker: New York, 1989.
3. Scamehorn, J.F., Harwell, J.H., Eds. *Surfactant-Based Separations: Science and Technology*; American Chemical Society: Washington, DC, 2000.
4. Kouloheris, A.P. Surfactants: important tools in chemical processing. *Chem. Eng.* **1989**, *96*, 130–136.
5. Pramauro, E.; Pelizzetti, E. The effect of surface active compounds on chemical processes occurring in aquatic environments. *Colloids Surf.* **1990**, *48*, 193–208.
6. Gullickson, N.D.; Scamehorn, J.F.; Harwell, J.H. *Surfactant-Based Separation Processes*; Scamehorn, J.F., Harwell, J.H., Eds.; Marcel Dekker: New York, 1989; Chap. 6.
7. Akita, S.; Takeuchi, H. Cloud-point extraction of organic compounds from aqueous solutions with nonionic surfactant. *Sep. Sci. Technol.* **1995**, *30*, 833–846.
8. Frankewish, R.P.; Hinze, W.L. Evaluation and optimization of the factors affecting nonionic surfactant-mediated phase separations. *Anal. Chem.* **1994**, *66*, 944–954.
9. Hinze, W.L.; Pramauro, E. A critical review of surfactant-mediated phase separations (cloud-point extraction): theory and applications. *Crit. Rev. Anal. Chem.* **1993**, *24*, 133–177.
10. Akita, S.; Takeuchi, H. Equilibrium distribution of aromatic compounds between aqueous solution and coacervate of nonionic surfactants. *Sep. Sci. Technol.* **1996**, *31*, 401–412.
11. Ferrer, R.; Beltrán, J.L.; Guiteras, J. Use of cloud point extraction methodology for the determination of PAHs priority pollutants in water samples by high-performance liquid chromatography with fluorescence detection and wavelength programming. *Anal. Chim. Acta* **1996**, *330*, 199–206.
12. Kimchuwanit, W.; Scamehorn, J.F.; Osuwan, S.; Harwell, J.H.; Haller, K.J. Use of a micellar-rich coacervate phase to extract trichloroethylene from water. *Sep. Sci. Technol.* **2000**, *35*, 1991–2002.
13. Sakulwongyai, S.; Trakultamupatam, P.; Scamehorn, J.F.; Osuwan, S.; Christian, S.D. Use of a surfactant coacervate phase to extract chlorinated aliphatic compounds from water: extraction of chlorinated ethanes and quantitative comparison to solubilization in micelles. *Langmuir* **2000**, *16*, 8226–8230.
14. Quina, F.H.; Hinze, W.L. Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. *Ind. Eng. Chem. Res.* **1999**, *38*, 4150–4168.

15. Sirimanne, S.R.; Barr, J.R.; Patterson, D.G., Jr.; Ma, L. Quantification of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-*p*-dioxins in human serum by combined micelle-mediated extraction (cloud point extraction) and HPLC. *Anal. Chem.* **1996**, *68*, 1556–1560.
16. Huddleston, J.G.; Willauer, H.D.; Griffin, S.T.; Rogers, R.D. Aqueous polymeric solutions as environmentally benign liquid/liquid extraction media. *Ind. Eng. Chem. Res.* **1999**, *38*, 2523–2539.
17. Komáromy-Hiller, G.; Wandruszka, R.V. Decontamination of oil-polluted soil by cloud point extraction. *Talanta* **1995**, *42*, 83–88.
18. Trakultamupatam, P.; Scamehorn, J.F.; Osuwan, S. Removal of volatile aromatic contaminants from wastewater by cloud point extraction. *Sep. Sci. Technol.* **2002**, *37*, 1291–1305.
19. Liu, C.-L.; Nikas, Y.J.; Blankschtein, D. *Aqueous Biphasic Separation: Biomolecules to Metal Ions*; Roger, R.D., Eiteman, M.A., Eds.; Plenum: New York, 1995.
20. Rosen, M.J. *Surfactants and Interfacial Phenomena*, 2nd Ed.; Wiley: New York, 1989; Chap. 4.
21. Gu, T.; Galera-Gómez, P.A. Clouding of triton X-114: the effect of added electrolytes on the cloud point of triton X-114 in the presence of ionic surfactants. *Colloids Surf.* **1995**, *104*, 307–312.
22. Ganong, B.R.; Delmore, J.P. Phase separation temperatures of mixtures of triton X-114 and triton X-45: application to protein separation. *Anal. Biochem.* **1991**, *193*, 35–37.
23. Domingo, X. *A Guide to the Surfactants World*; Edicions Proa: Barcelona, 1995; Chap. 8.
24. Clint, J.H. *Surfactant Aggregation*; Blackie: Glasgow, 1992; Chap. 7.
25. Gu, T.; Sjöblom, J. Surfactant structure and its relation to the kraft point, cloud point and micellization: some empirical relationships. *Colloids Surf.* **1992**, *64*, 39–46.
26. Huibers, P.D.T.; Shah, D.O.; Katrzyk, A.R. Predicting surfactant cloud point from molecular structure. *J. Colloid Interface Sci.* **1997**, *193*, 132–136.
27. Marszall, L. Effect of electrolytes on the cloud point of ionic-nonionic surfactant solutions. *Colloids Surf.* **1987**, *25*, 279–285.
28. Marszall, L. Cloud point of mixed ionic-nonionic surfactant solutions in the presence of electrolytes. *Langmuir* **1988**, *4*, 90–93.
29. Komáromy-Hiller, G.; Calkins, N.; Wandruszka, R.V. Changes in polarity and aggregation number upon clouding of a nonionic detergent: effect of ionic surfactants and sodium chloride. *Langmuir* **1996**, *12*, 916–920.

30. Koshy, L.; Saiyad, A.H.; Rakshit, A.K. The effects of various foreign substances on the cloud point of triton X 100 and triton X 114. *Colloid Polym. Sci.* **1996**, *274*, 582–587.
31. Roberts, B.L. The Use of Micellar Solutions for Novel Separation Techniques; University of Oklahoma; 1993, Ph.D. Dissertation.
32. Choori, U.N.; Scamehorn, J.F.; O'Haver, J.H.; Harwell, J.H. Removal of volatile organic compounds from surfactant solutions by flash vacuum stripping in a packed column. *Ground Water Monit. Rem.* **1998**, *18*, 157–165.
33. Hasegawa, M.A.; Sabatini, D.A.; Harwell, J.H. Liquid–liquid extraction for surfactant-contaminant separation and surfactant reuse. *J. Envir. Engr. Div. ASCE* **1997**, *123*, 691–697.
34. King, C.J. *Separation Processes*, 2nd Ed.; McGraw-Hill, Inc.: Singapore, 1980; Chap. 6 and Chap. 14.
35. Foust, A.S.; Wenzel, L.A.; Clump, C.W.; Maus, L.; Andersen, L.B. *Principles of Unit Operation*, 2nd Ed.; John Wiley & Sons: Singapore, 1980; Part 1; Section 2.
36. Robbins, L.A. *Perry's Chemical Engineers' Handbook*, 6th Ed.; Perry, R.H., Green, D., Eds.; McGraw-Hill, Inc.: Malaysia, 1984; Chap 15.
37. Zhang, S.H.; Ni, X.D.; Su, Y.F. Hydrodynamics, axial mixing and mass transfer in rotating disk contactors. *Can. J. Chem. Eng.* **1981**, *59*, 573–583.
38. Tong, J.; Furusaki, S. Mean drop size and size distribution in rotating disc contactor used for reversed micellar extraction of proteins. *J. Chem. Eng. Jpn.* **1995**, *28*, 582–589.
39. Strand, C.P.; Olney, R.B.; Ackerman, G.H. Fundamental aspects of rotating disk contactor performance. *AIChE J.* **1962**, *8*, 252–261.

Received March 2003

Revised August 2003

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Order Reprints" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Request Permission/Order Reprints

Reprints of this article can also be ordered at

<http://www.dekker.com/servlet/product/DOI/101081SS120027991>